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Inertial waves and an initial-value problem 
for a thin spherical rotating fluid shell 

By J. M. HUTHNANCE 
Department of Oceanography, University of Liverpoolt 

(Received 7 September 1970 and in revised form 16 September 1977) 

Natural modes of oscillation of a vanishingly thin spherical rotating fluid shell, with 
frequencies u less than twice the angular velocity Q, were found by Haurwitz (1 940). 
Their validity is, however, put in question by the presence of a singularity at  critical 
co-latitudes 0,: 2Q cos 0, = u in the O ( E )  term of an expansion in the relative shell 
thickness E (Stewartson & Rickard 1969). The problem is investigated here by con- 
sidering the evolution of flow from a specified initial distribution. The principal 
features are as follows: 

(i) The O( 1 )  natural modes of Haurwitz, decaying on a time scale Q - ' E - ~ .  
(ii) Corrections to (i), regular and of magnitude O ( E )  except near critical latitudes. 
(iii) Essentially transient inertial waves of magnitude O(s). 
(iv) Inertial waves of magnitude O ( d )  with the natural-mode frequencies cr and 

generated by (i) at  critical latitudes. 
On a time scale Q - ~ E - ' ,  (iii) and (iv) develop vertical and horizontal length scales E and 

propagate throughout the ocean. The continuing energy transfer from (i) to (iv), at 
a rate 0(s2Q) ,  appears to be the principal respect in which (i) and (ii) fail to constitute 
a conventional normal mode. 

1. Introduction 
The rotating thin spherical shell of homogeneous inviscid fluid has attracted con- 

siderable historical interest as the simplest model for the oceans, particularly in 
connexion with tides. For a shell defined by concentric spheres with radii a > b, 
a formal expansion of the equations of motion in the relative shell thickness 
E = log (a /b)  yields (Pekeris 1975) Laplace's tidal equations (henceforth LTE) &s the 
largest, 0 ( e o )  terms. LTE are used extensively for the study of long waves on the 
ocean. 

Taking the sea surface (radius a )  as rigid corresponds to the special case of a zero 
divergence parameter 4Q2a2/g(a - b) .  This assumption corresponds to large gravity 
(for example), and is appropriate when LTE are applied to a small region of the earth's 
oceans. In  this case, Haurwitz (1940) and Longuet-Higgins (1964) found natural modes 
for the complete spherical shell. They have zero radial velocity and a meridional 
velocity in the form of tesseral harmonics. However, the validity of these solutions of 
LTE is in doubt. 

t Present address : Institute of Oceanographic Sciences, Bidston Observatory, Birkenhead, 
Merseyside L43 7RA, England. 
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Stewartson & Rickard (1969, henceforth denoted by SR) attempted to find natural 
modes for a thin spherical shell (1 B E + 0) by using the complete equations of motion 
and expanding in E about the O(so) tesseral-harmonic solution. This procedure contrasts 
with taking E = 0 apriori by use of LTE. The O(E)  term of the expansion was found to 
be singular at critical co-latitudes 0,: cosB, = _+ u/2Q, where the natural-mode 
frequency u equals the local inertial frequency, viz. twice the vertical component of 
the earth's rotation. By the addition of O ( d )  motion having fine structure (vertical 
and horizontal length scales €a), the severity of the singularity was reduced to degree 
- 8 for the velocity. This is integrable to a continuous pressure distribution, but not 
integrable in square for kinetic energy. Subsequently, Stewartson & Walton (1976, 
henceforth denoted by SW) were able to complete this fine-structure solution around 
the sphere without further singularities, although the velocity singularity continues 
all the way round on reflected characteristics. 

The difficulty at critical latitudes reflects the ill-posed nature of the mathematical 
problem governing natural modes of frequency u c 2Q, namely 

1vit.h 

(u/2Q)2VZp - azp/az2 = 0 

zero radial velocity on r = a, b. 

Problem (1 .1)  is hyperbolic, but has boundary conditions suitable for an elliptic 
equation. By contrast, LTE do yield an elliptic field equation: 

VH . [(uz - 4 ~ 2  cos2 s)-l vHP~ = f ( p ,  ~ H p j ,  

where VH is the horizontal gradient operator. 
In  physical terms, the radial momentum equation contains a Coriolis force term 

(neglected in LTE) associated with the local horizontal component of the earth's 
rotation. In  a homogeneous fluid this can be balanced only by an O( 1) radial pressure 
gradient. Hence there are O(E)  pressure corrections of frequency u which will drive 
inertial motions resonantly at critical latitudes. 

The introduction of stratification, viscosity or an initial-value approach may be 
expected to determine smooth solutions. The first two (and especially stratification) 
might be regarded from a mathematical viewpoint as changes in the problem, but are 
nevertheless important in the ocean. 

Miles (1974) has concluded that LTE form a valid description of barotropic motion 
if the buoyancy frequency N (a measure of the stratifbation) greatly exceeds 2R as is 
usual in the ocean. Buoyancy forces then assist in balancing the radial Coriolis force, 
removing the critical-latitude singularity. SW considered the normal-mode problem 
more specifically, for various degrees of stratification as measured by N z / (  2R)2 
relative to 6. There is no essential change from the homogeneous case until 

N2/(2Q)2 2 1, 

when the replacement for (1.1) is hyperbolic only between co-latitudes f 0,: 

The fine structure is thus confined between & 0,, which close from the poles to the 
critical co-latitudes as N 2 / (  2Q)2 increases to O(e-f), when the critical-latitude singu- 
larities are removed. 
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Walton (1975) has shown that a small kinematic viscosity v ( E ~  % E = 2 v / ( ! M ~ ~ ) )  
reduces the (degree -4) velocity singularities of the homogeneous case to smooth 
shear layers of breadth asE* and maximum velocity O(dE- i ) .  Energy is lost here at  
a rate O(!&E*) relative to the total in the natural mode. The shear layers, along 
characteristics of (1 . l),  further suffer a fractional loss O(E*) of intensity at  successive 
reflexions off the bounding shells away from critical latitudes. In  practice this means 
effective confinement of the fine structure close to critical latitudes. The introduction 
of viscosity generally appears to support the SR solution, including the fine structure, 
as a valid normal mode. 

Normal modes are of interest in facilitating the solution of initial-value or forced- 
oscillation problems. Their validity therefore depends on how accurately they may 
represent the solutions of such problems. An initial-value problem is considered here; 
this also sheds some light on forced oscillations. By ignoring stratification and viscosity, 
we are attempting to understand better the basic homogeneous, inviscid system, and 
in particular why the normal-mode problem is mathematically ill posed and un- 
satisfactory in practice, rather than attempting to describe the real ocean which 
inspired this model. 

Initially the velocity is specified to have zero radial component, and meridional 
and zonal components corresponding to one of the Haurwitz normal-mode solutions 
of LTE. Since tesseral harmonics are complete on the spherical surface, no loss of 
generality is implied among initial current distributions of global length scale. The 
full equations of motion and the initial time development are described in $2.  The initial 
conditions result in essentially transient O(e) inertial waves whose evolution on the 
time scale Q-1e-1 is followed in $ 3. Of more significance for the normal-mode question 
are the O ( d )  inertial waves generated at  critical latitudes, which are treated separately 
in $4.  

2. Equations of motion and initial solution 
We consider a homogeneous, inviscid, incompressible fluid with small amplitude 

motion u = (u, v, w), in spherical polar co-ordinates (8, $, r ) ,  relative to a reference 
frame rotating with angular velocity G!. The linearized equations of motion are 

where 

aupt + 2 ~ 2  A u = - vp, 
v.u = 0, 

p = p-l(pressure) - @22r2 sin2 8. 

For a constituent harmonic in 4, the normalization (Miles, private communication) 

(u, v, w) = (2f ia2/rp,)  Re [( U, i V ,  s W )  eim$], 

p = ( ~ Q u , ) ~  Re [iPei"@] 
transforms (2.1) to 

0 - D  
-v* 

- v* 
m -P*(a/%+@ 0 

10-2 
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Herep = cos B,p, = sin 0,  t; = s-l log r / a ,  D = pg a/ap, T = 2Qt and U = ( U ,  V ,  W ,  P) 
is a function of p, 8 and T. The motion is also subject to boundary-conditions 

} (2 .3 )  
radial velocity W = 0 on t; = - 1 ,0  (bounding spheres), 

U bounded at  p = k 1 (poles) 
and initial conditions 

( U ,  V ,  V') (p, t;, 0) = (712, -D, O)PE(p) (n 2 Iml > 0). (2 .4 )  

This form of initial flow field, independent of the vertical co-ordinate 6, corresponds 
to one of the Haurwitz (1940)  normal-mode solutions of (2 .2 )  with E = 0 (i.e. LTE), 

(2 .5)  
namely U = U, = (m,  - D, 0,p + AD/m) P,"(p) eihT, 

where h = m/n(n + 1)  and the associated Legendre function P z ( p )  satisfies 

Any initial flow field which varies only on global length scales (and is therefore inde- 
pendent of 8) may be expressed as a combination of forms (2 .4 )  for various m and n, 
apart from axisymmetric constituents (m = 0). The latter have O ( d )  normal-mode 
frequencies and are subject to separate consideration (Stewartson 1971), the critical 
latitudes being close to the equator. Hence the use of (2 .4 )  involves no loss ofgenerality 
in the present context. 

If s is neglected entirely, the Haurwitz normal mode (2 .5 )  solves (2 .2) - (2 .4)  exactly. 
However, our purpose is to investigate the small-s corrections which appear to be 
singular for the normal modes (2 .5 ) .  Hence we let 

U = Uo+EU1(p,f[,T)+ ..., 

- i a / a ~  - p  0 - D  0 0  0 0  

n m -p*a/ag 0 -P* 

L o =  [ -! - i W T  0 0 p*Y,at;]' L1 = [i ;* -:* i] 
0 

so that the terms of ( 2 . 2 )  of order so, el, ... are 

LOU, = 0, (2 .6) ,  

( 2 4 ,  LOU, = - L,U, = (O,O,p*~O, 0) 

and so forth. Equation (2 .6 ) ,  is already satisfied by the choice (2 .5 )  of U,. Equation 
(2.6), ,  together with the boundary and initial conditions (2 .3 )  and (2 .4 ) ,  then deter- 
mines the corrections sU, in the form 

PI = &([ + Q) eihT, 

(U,, V,, W,) = X, eihT + X, ei@' + X - e-iaT. 

This correction EU, applies to the whole sphere including critical latitudes. The three- 
component vectors X, and X* are specified in table 1. X, represents the O(s)  correction 
to the normal mode, arising as a particular solution of the forced equation (2.6), .  The 
oscillations X+ e*ipT at the local inertial frequencies k p are complementary functions 
(satisfying the homogeneous form of (2 .6) , )  introduced to satisfy the initial conditions. 
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\From ... 
To\ 

X h  xt 

TABLE 1. Contributions to O(E)  terms in the initial expansion. 
Here U, = (m-p$ /A  7 D )  P;. 

As indicated by SR(2.17), X,, is singular a t  p = k A. For finite times, however, these 
singularities are an artifact of the division of U, into normal-mode and inertial terms. 
X* has an equal compensating singularity a t  ,u = 2 A ,  so that U ,  is regular, as expected 
for the initial-value problem (note that elifiT tends to eihT as ,u -+ k A ) .  Nevertheless, 
as ,u -+ & A, factors (T ,  T ,  T2) appear in some terms for (U,, V,, W,), so that U ,  becomes 
large near critical latitudes as time passes. In  fact, for large times T the expansion 
breaks down in three ways: 

(i) W, contains a factor T and becomes large. 
(ii) Continuation of the expansion in E leads to apparent factors 

(p2 - h2)-2n+(l, LO, 3) 

in (&,K,W,,Pn), as indicated by SR(3.1) for the normal-mode terms. Powers 
2n - (1 ,1 ,0 ,3)  of T at critical latitudes (rather than singularities) result when the 
inertial terms are included. 

(iii) Throughout the fluid, the inertial-wave parts of (U,, V,, W,, P,) have explicit 
factors T2n-(2*2*1p4) (n  2 2 ) .  

Hence the expansion in E is valid only while T < €4 and successive terms of size 
enT2n+q decrease with n. In  the following section we consider the later development of 
the inertial waves X* efifiT, excluding the spurious initial singularities at  critical 
latitudes. Q-ls-' emerges as the principal time scale for inertial-wave development. 
Although (in t,he absence of viscosity) their energy does not decay, those inertial 
waves X* efitT not initially close to critical latitudes are essentially transient, being 
subsequently uncoupled with the normal-mode oscillation of frequency A. Hence 5 3 
does not bear directly on the normal-mode question, to which we return in 5 4 with the 
separate treatment of critical latitudes. 

3. Transient inertial waves 
3.1. Dispersion relation 

The terms X*eefipT of the initial solution arose from the application of the initial 
conditions a t  order E .  Apart from the neighbourhood of critical latitudes, where 
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,u -rr k A ,  these inertial waves must subsequently satisfy the equations of motion (2.2) 
and boundary conditions (2.3) independently. The form of the T = O(1) solution 
suggests that a resealed vertical velocity d W ,  should be introduced to seek a new form 
of solution X&, 5, d T )  e f i p T  a t  times O(Q-'e-*). This may be substituted in (2.2) and 
a solution obtained by decomposition into vertical structure modes eznnif (ezaniC - 1 for 
E ~ W , ) .  However, this also breaks down, when T = O(s-l), in two respects: 

(i) E*W, has further grown to O(s-4); 
(ii) X* varies rapidly, at a rate O(E-*, e-l), with d T  and p. 
It is therefore necessary to reconsider the solution for T = O(a-l); the result covers 

We write r = ET, and seek a solution of (2.2) in the form 
T = O(E-4) in any case. 

(U, K EW; s-lP) = e[U(l)+ EU(~)+ . . .] (p, [, 7) exp [i$(p, r ) / s] ,  (3.1) 

which is to correspond to the vertical structure eznni6 when T = O(E-*). The phase 
function q5 yields a local meridional wavenumber and frequency 

Q.4 7) = p* a$/ap, d P ,  7) = a$/aT 

for oscillations on a length scale EU and time scale C2 -l. We also write rr* = (1  - a2)*. 
Substitution of (3.1) in (2.2) yields 

The lowest-order equations AU(l) = 0 must be satisfied first. They determine U(1), 

Vl) and P(l) successively in terms of W(l), which satisfies a second-order differential 
equation in 5 (only), with coefficients independent of (. Thus 

W(') = W(p,  7) [exp (im+g) - exp ( im- t ) ] ,  

7% = qpp* k aa*)/(C+-pZ) 

(3.3) 

where 

and the boundary condition W(l) = 0 on 
rn* with the roots of the usual dispersion relation 

= 0 has been incorporated. We may identify 

u2 = (Zp* + mp)2/(Z2 + mz) 

for inertial waves. Thus the lowest-order terms of (3.2) simply require that the free 
oscillations arising from the initial conditions satisfy the local inertial-wave dispersion 
relation. 

3.2. Evolution 
The final boundary condition W(l) = 0 on [ = - 1 requires 

f 2Zacr,/(a2 -pz)  = rt (m+-m-) = 27277, (3.4) 
where n is an integer which we identify as the vertical structure mode number when 
T = O(E-4). Thus the vertical wavenumbers m* are quantized and the phase function q5 
is constrained by (3.4). Solving (3.4) for I = - @/a8 and differentiating with respect 
to r gives a first-order linear partial differential equation for cr = a$/ar. The solution is 

cr = constant = rt cos8, 
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on the characteristics 8(7,8,) defined by [a8/a~] ,  = group velocity = - acr/al, namely 

0 = F(7, 8,, 8) = (./InIn) sin 8, sin228, + S{2(8, - 8) + COB 28,(sin 28 - sin 28,)). 
(3.5) 

Here 8, is the co-latitude of the characteristic initially (when 7 = 0) ,  when the fre- 
quency u of the inertial-wave transient was k p  = & cos e,. S is the sign of k n in the 
case of an initial frequency p. It should perhaps be emphasized that these character- 
istics in 8 , ~  space are quite unrelated to those of the normal-mode problem in T ,  8 
space. 

The form of the slowly varying wave amplitude W ( p ,  7) in (3.3) is determined by the 
O(s) terms of (3.2): 

(3.6) 

By analogy with the lowest-order terms, U2), V2) and P2) may be found successiveIy 
in terms of and U(l). W2) then satisfies an inhomogeneous form of the equation 
satisfied by W(Q. Thus we have a linear system forced by U(l) (which may be expressed 
in terms of W s )  but possessing a non-trivial solution when unforced. The requirement 
that a solution W(2)exists imposes conditions on the forcing, i.e. on W(p,  7) .  An equiva- 
lent alternative approach is to form an energy balance from AU(l) = 0 and (3.6), 
namely 

(3.7) {U(’). (AU(’))* + U(1)*. (BU(1)-AU(2)))dc = 0, s-”, 
where the superscript * denotes complex conjugation. On evaluation and use of the 
boundary conditions W(1) = 0 = W2) on 5 = - 1, 0, the imaginary part is found to be 

”lo +(lU(1)12+ ) P [ 2 +  IW(l)l2)dS+D/lo ImP1)U(1)*d6+p* ImPcl)*W(l)dc = 0. 

(3.8) 

The last term is in fact zero, so that the local increase of kinetic energy in the evolving 
transient inertial wave is due simply to convergence of its meridional energy flux. 
The latter may be evaluated (in dimensional form) as 

a7 -l -1 J:l 

In particular, the energy flux is southward or northward according to the sign of S 
[i.e. according to the progress de/dr of the characteristics (3.5)].  

so that an evolution equation 
for I WI2 may be found. Similarly, the real part of (3.7) determines the evolution of 
arg W. The results are simpler in characteristic co-ordinates (7, 8,): 

All quantities in (3.8) are expressible in terms of 

are constant on characteristics. W and hence U(l) are thus determined by the initial 
condition 
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obtained from the initial solution at  large T. Other initial conditions W - Wo(p; n)  
representing any initial distribution of inertial waves may be accommodated by this 
solution. 

Thus the transient inertial-wave motion evolves along the group-velocity charac- 
teristics (3.5), in the sense of both maintaining constant frequency and energy 
conservation. The characteristics are sketched in figure 1 for t.he case S = 1 ; S = - 1 
yields a mirror image in 8 = &T. When S = 1 it  is easily shown that the characteristics 
have positive slope, and it is also possible to show, as suggested by the figure, that 

(i) characteristics starting in 8, < 477 do not meet in 0 < frr; 
(ii) characteristics starting in 80 > +r do not meet. 
To a large extent, therefore, the transformation from ( 6 , ~ )  to characteristic co- 

ordinates (O,, 7) is non-singular. The Jacobian is 

which is the source of the factor (aF/80,,)-4 in the amplitude of W .  As the character- 
istics crowd closer together, so that the Jacobian (i.e. aF/a8,) is small, the wave energy 
is compressed, so that I W12 increases as (aF/H,)-l. 

3.3. Further developments 

We remark that the linearity of the problem implies a simple addition of solutions 
where characteristics cross. Then the above solution for the evolving transient inertial 
waves remains valid indefinitely, except perhaps along singularities of the transforma- 
tion to characteristic co-ordinates, a t  latitudes where p = +a and at  the poles 
p = 5 1.  We discuss these briefly in turn. 

It is clear from figure 1 (in which S = + 1 )  that the characteristics from 8, < 477 
form a caustic in 8 > $77 where the Jacobian a(8,7)/a(6,, 7) vanishes. It may be shown, 
as the figure suggests, that as time progresses characteristics from decreasing 6, < 477 
successively arrive a t  this envelope or wave front, which we denote by 83(7), and are 
subsequently overtaken by a characteristic of lesser 6,. Since the wave energy at  any 
frequency cos8, follows the characteristic labelled by 0,) this implies a steadily 
increasing frequency a t  the wave front. Close to the caustic 8 E ( 7 ) ,  we may expect an 
increased wave energy density associated with the crowding of characteristics; this 
also implies a more rapid spatial variation of W ( p ,  7) as these wave amplitude functions 
having different histories arrive in close proximity. Accordingly, it is appropriate to 
seek a solution of the form 

( U , ~ . : ~ e - - l P )  = E ~ - - ~ ~ [ U ( ~ ) + @ U ( ~ ) +  ...I (g ,C,~)exp [ $ ( ~ , T ) / E ] ,  

where y is the magnified spatial co-ordinate e - P [ 0 - O E ( ~ ) ] ,  q5 takes its known value 

near O E ( 7 ) ,  and aE and I, are the known values of (T and I on 6 ~ ( 7 ) .  After some investiga- 
tion of the balance of terms a t  successive orders of approximation €0, 8 and ezq, it  
appears that appropriate choices are p = $ and q = Q. Thus the wave front has a 
breadth E* and the wave amplitudes there are €8 compared with E elsewhere. The 
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FIGURE 1. Characteristics (3.5) for the propagation of the nth-mode inertial wave over 
the sphere. Characteristics originating in 8 > in &re drawn dashed for clarity. 

wave envelope is represented by an Airy function (Abramowitz & Stegun 1965, 
p. 446): 

where 47) is a bounded function of time along the wave front 0,(7). This solution 
gives exponential decay ahead of the wave front, and its asymptotic form behind, 
as y -+ - 00, matches the previous form of W ( p ,  7) as implied by its development along 
characteristics, except that the phase of W on the characteristic emerging from the 
front is advanced by in. 

At the latitudes ,u = & m where the local inertial frequency equals that of the travel- 
ing inertial wave, the wave motion becomes horizontal and the wavenumber vector 
is directed along the local vertical. Thus the phase of W remains as defined in $3.2, 
but W 3 0, so that the amplitude of the motion might be better described by U1)(,u, 6,7) 
(say). Otherwise there is a smooth transition through these latitudes. 

The characteristics in figure 1 (S = + 1) eventually reach the south pole ,u = - I ,  and 
likewise S = - 1 characteristics with their associated wave energy arrive at the north 
pole ,u = + 1. For the case illustrated by the figure, the first arrivals are at 7 = $In1 n, 
when there is a concentration a t  the south pole of characteristics originating from 
nearby. Strong and probably complex inertial wave motion is then to be expected; 
the form (3.1) which develops along characteristics is in any case inappropriate near 
poles, where the first two rows of the governing matrix A become linearly dependent. 
New characteristics, along which the inertial wave energy may propagate away from 
the polar region, may be expected to start at 7 = $In/ n. The energy involved, originat- 
ing from within a distance O(&) of the pole, is only a small, O(s) fraction of the total 
in the transient inertial motion. 

Subsequently characteristics arrive from non-polar regions. Inspection of the form 
(3.1) appropriate elsewhere suggests that a polar form 

W Ai (l+Y), 
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should be sought, the E dependence being eiltn6 & e-innf (with the minus sign for W(l) 
only). Here y = e-lp+ is a magnified radial distance from the pole; the implied hori- 
zontal length scale is e. Substitution in (2.2) yields 

P(”(y, 7) = Pb) Jm( - Jy), 

from which the velocity components follow. J, is a Bessel function of degree m, and 
its asymptotic form for large y, 

y-t{exp ( - ily) + exp [ily + i (m + 8) n]}, 
matches the solution on the arriving characteristic. There is also a ‘reflected’ wave 
with a phase change (m + 8) n which will propagate along a characteristic characterized 
by cr and leaving the pole at the time of arrival. Alternatively, one may regard the 
arriving characteristic, with its associated waves, as simply continuing across the 
pole with a phase change &T. This solution and phase change at  the pole are analogous 
to the components SW(6.17) of the SR normal-mode fine structure. 

4. Critical latitudes 
In the discussion of the transient inertial waves in $3, we excluded those waves 

starting near p = k A, where X, is singular. In  the neighbourhood of p = + A (say, 
taking this particular case for definiteness), the development of the singular O(E)  
normal-mode term X, eihT and the inertial term X, e i p T ,  with its cancelling singularity 
in the initial solution, must be considered together. The form of the initial solution 
indicates that an s-4 neighbourhood of p = h should be considered; as concluded in 
9 2, fresh consideration is required after a time O( Cl-le-t), when 

(U1, v,, w,, Pl) = O(s-4, e-4, e-1, 1). 

4.1. Times O( Cl-1e-4) 

We write 6 = d, s = 6h,T and z = (p--)/A,&, where A ,  = (1 -A2)&, and seek 

U = U, + ( O , O ,  0, sPl) eihT + (Su, 88, W, 63p) (5, x, 6) eihT, 

where Pl = ([+ $) V,(,,, balances the vertical Coriolis force as before. 

dependence. Substitution in (2.2) yields 
The fine structure ii is of the form considered by SR with the addition of slow time 

A -  is^, alas - ( A  + a , x )  0 -a~,a/ax u 6 2  
- ( A  + 0 6 h * ~ )  h - i6h, -A* 8/85 - ah, 0 

A*& ]I] = a [  -Dp] +o[;]. [ A, a/ax 0 -A*  a/% 0 p=h 

Hence to lowest order in 8, U = V = ajj/a<, aW/a[ = aG/ax and 

this final equation being obtained from the degenerate sum of the horizontal momen- 
tum equations, which are linearly dependent at lowest order. The solution is most 
readily interpreted when expressed in terms of Fourier constituents, e.g. 
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FIGURE 2. Regions extending the O(&) ( 8 , ~ )  neighbourhood of a critical latitude. 

The initial condition 5 = 0 (s = 0 )  and boundary conditions 5 -+ 0 (y -+ k co) and W = 0 
(5 = - 1 , O )  yield 

exp (7rniyz)dy (n 4 0 ) ,  (4.1) 
- 
uo = 0, ii, = *+exp ( -nnixZ) 

2h* 

to which the other quantities are related by 

?in = un, 1 au, - w, = -- 
2nni ax 

- 
Po = p,, W o  = - C W,. 

n+O n10 

For moderate x and s, 
- imU, 
u, - ~ 

4nnxh, 

so that u - (c+Q)- mu+ (1 -eizs) 
2xh* 

has an absolutely convergent Fourier series of terms O( l /n2) (n -too). 
The form (4.1) may be expressed in terms of Fresnel integrals, for which limiting 

forms are known for large or small x and x +s/2nn (Abramowitz & Stegun 1965, 
p. 300). For small s = 6 T ,  &En N ~ m U + T / ( 4 n n )  matches the Fourier constituent of the 
initial solutioneUl N -QeirnU+T([++) a t  large T .  For large x or s (see figure 2), (4.1) 
implies the existence of Fresnel wave fronts along x = O(1)  (region 111) and 
x +s/2nn = O( 1 )  (region V) for each vertical structure mode n. In  order to follow the 
solution for longer times, the regions II-V demarcated by these fronts must be con- 
sidered separately. Region I1 (large 1x1, given s) corresponds to large distances from 
critical latitudes. The asymptotic form of (4.1) agrees with the solution for region I1 
developed to T = O(B-1) in $3.  
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4.2. Later times 

Region I11 is a €4 neighbourhood of the critical latitude. We divide the integral ranges 
of (4.1) into (co,x+s/2nn) and (x,co). The former becomes small as s+co, and 
when 7 = ET = O(1) it contributes motion of the form 

which may be identified with the transient inertial wave discussed in $3 .  The major 
contribution comes from the range x < y < co, which represents a standing Fresnel 
wave front at the critical latitude p = A. Although obtained in $4.1 as a solution for 
T = O(s-*),  this part of (4.1) is clearly independent of time, and therefore persists 
indefinitely as a valid solution. We return to this after considering the related motion 
in the two remaining regions. 

For region IV we may again identify the range (a, x+s/Znn) in (4.1) as the tran- 
sient inertial wave which develops according to 3 3. The range x < y < 00 contributes 

to (4.1), and when 7 = sT = O(1) may be expected to develop as 

which takes account of the rapid variations in x = (p - A ) / A ,  6 away from the critical 
latitude. We expect a$,/a7 = A in order to retain the time factor eiAT. Since this form 
is the same as (3.1) for the transient inertial waves, apart from the greater magnit,ude 
s t ,  the same equations govern its evolution. Thus region I V  contains O(s4) inertial 
waves developing along group-velocity characteristics (as described in Q 3) which 
emerge from region 111 (region V is the €3 neighbourhood of the characteristic starting 
at p = A).  Since the frequency u is A at the region 111 source of the O ( d )  motion, the 
characteristics all have CT = A (i.e. 8, = OC), and are distinguished by their starting time 
T~ > 0 a t  0 = 0,. Replacing (3.5), we therefore have 

o = (2) sin 0, sin2 2ec + {2(e, - 01 + cos 2ec(sin ze - sin Z O ~ ) }  

to describe the group-velocity characteristics of the O(&) inertial waves in region IV. 
The characteristics are all identical with that of figure 1 which begins at  the critical 
latitude p = A, apart from the displacement 7, in 7.  

Region V forms a transition when T = O(e-l) between the advancing region IV of 
O ( d )  inertial waves of frequency A coming from the critical latitude, and the region I1 
unaffected by critical-latitude phenomena and containing merely the O(s)  transient 
inertial wave. A solution of the following form may be sought: 

(u, E - ~ P )  = 8(U(D + X J ( ~ )  + 8 2 W +  . . .) (y, 6, T ;  e)  exp [ i h ~  + i+,(8)/s], 

where 6 = st, and y = (0 - 0,(7))/6 measures distance from the group velocit'y charac- 
teristic 13 = f?,(r) starting at  O = e c ,  7 = 0; the length scale 6 is suggested by the 
T = O(sd) solution. $,(@ is the known phase of the region IV inertial waves. Substitut- 
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ing in (2.2) and proceeding to relative order S2, an equation governing the form of 
U(4) is eventually obtained. This is found to admit a similarity solution, namely 

WW = f(  7) Y(g(7 )y ) ,  
Y(z)  = exp (*pxZ) dx (p  is a positive constant) where 

represents a Fresnel-integral wave front advancing along O F ( 7 ) .  The width 1 / g ( 7 )  of 
the wave front varies as the front progresses, i.e. 

1: 
nn (1 - cos 28, cos 28,)2 

Pg2 = h2h2, a q a e ,  9 

and the amplitude f(7) matches that of the O(E*) inertial waves of region IV. This 
solution also matches the O ( E )  transient inertial waves of region 11. 

To summarize the above picture, we have found that at the critical latitude the 
vertical component - E,u*V, of the Coriolis force on the O( 1) Haurwitz normal mode is 
balanced by a pressure correction €PI. Having frequency A, this causes a near-resonant 
inertial-wave response a t  the critical latitude p = A. Inertial waves O ( d )  of all vertical 
wavenumbers n are generated, each at a standing Fresnel wave front (region 111) of 
width €4 at the critical latitude. The energy of each mode n propagates away (south- 
wards for n > 0, northwards for n < 0) with its group velocity to fill the spreading 
region IV behind an advance Fresnel wave front, region V. 

5.  Discussion 
We have considered the motion in a thin (thickness E )  spherical shell evolving from 

an initial state in which the velocity corresponds to one of the normal-mode solutions 
of LTE found by Haurwitz (1940). Any initial velocity field with the global length scale 
is expressible as a linear combination of these, so that no loss of generality is incurred 
by considering one mode individually. The dominant feature of the subsequent motion 
is the normal-mode solution PE of LTE, with frequency [2Qm/n(n + I)] i- O(e2) .  

The largest additions to the LTE normal mode are O(E*) inertial-wave fine-structure 
modes of frequency 2Qm/n(n + I) ,  generated at  and propagating from critical latitudes 
as found in $4. Since they spread from the critical latitudes at a rate RE, behind the 
various Fresnel wave fronts corresponding to the separate vertical structure modes, 
they represent an energy loss rate O(SZs2) from the driving LTE normal mode. This 
energy transfer continues indefinitely (implying a decay rate O( Qe2) for the Haurwitz 
normal-mode form), and is perhaps the most important factor in any discussion of the 
‘validity’ of the normal modes. 

It appears that any ‘normal mode ’ must have fine-scale inertial-wave velocities 
of order €3 which are not square-integrable, on account of the infinite energy transfer 
to such motions which is implied by the indefinite maintenance of the LTE normal- 
mode oscillation. Hence the SR solution is as well behaved as possible. However, we 
argue that the O ( d )  terms in the solution of the initial-value problem do not tend to 
those of the SR modified normal mode in any meaningful sense. Indeed, the most 
realistic approach is probably to ignore the transient inertial waves, and to include 
the O(E*) inertial waves, generated a t  critical latitudes, only to the extent of that part 

u, = -exp ( - m i x 2 )  
- m<U+ 

2h* 
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of (4.1) which continues indefinitely. In  doing this we neglect the repeated returns 
of the advancing wave front (region V) after passage through a pole of rotation. Such 
an assumption is appropriate if the fine-structure inertial motion is somehow dissipated 
on its passage around the spherical shell, and corresponds to the radiation condition 
that all the fine-structure motion should radiate only away from its critical latitude 
source. This contrasts with the SR fine structure, in which equal radiation towards and 
away from the critical latitudes in each mode is implied by the form SW(6.1). Even 
without appeal to dissipation of the fine structure as it passes around the shell, we 
recall (cf. 5 3) that inertial waves pass smoothly through their critical latitude. Hence 
there is net energy radiation from the critical latitudes even with their return. Their 
essentially random phase relation on return after O ( F - ~ )  oscillations (especially as 
E -+ 0) also makes inclusion of the returning waves inappropriate. If in fact we do appeal 
to dissipation, the O ( d )  inertial motions of course never build up to the point where 
they cease to be integrable in square. Indeed, with or without dissipation, a velocity 
field not integrable in square, albeit at  O(e)) ,  cannot be approached by a sensible 
representation of a finite-energy solution. 

In  the context of an initial-value problem, the Haurwitz normal modes do appear 
to be useful in that, until times O ( Q - k 2 ) ,  they may be combined as indicated by the 
initial conditions to represent the bulk of the energy in the evolving motion. After 
such times, however, the energy in the fine-structure motion (which is essentially 
chaotic as E -+ 0) has become appreciable. The introduction of kinematic viscosity v 
does not affect this conclusion unless v 2 Q U ~ E ~ ,  in which case the viscous decay rate 
Q(v/Ra2e2)8 of both the normal modes and the fine structure exceeds the energy 
transfer Qs2. Forced oscillations are another case in which normal modes may form 
a useful representation. In this context we may expect continual generation, at the 
forcing frequency IT, of fine-scale inertial wave motions radiating from the correspond- 
ing critical latitudes. At non-resonant frequencies (v =+ 2Q2m/n(n + 1)) ,  the Haurwitz 
normal modes then form a valid representation of the motion only if we again suppose 
that the fine structure is somehow dissipated in its passage around the sphere. Other- 
wise, an indefinite build-up of the inertial wave motion eventually swamps the 
constituents of global length scale. 

Perhaps the most unsatisfactory feature of the analysis is the decomposition into 
an infinite set of vertical structure modes, introducing questions of convergence. 
However, the wave fronts found, having greater speeds for lower modes, appear to 
form a potentially observable feature of the individual modes. Any numerical calcula- 
tion involving a finite-difference scheme inevitably truncates the system to a finite 
number of such modes, and can therefore merely check and not supplement this 
analysis. The results of numerical analysis will depend crucially on the choice of 
radiation condition (e.g. inertial-wave radiation only away from critical latitudes). 
This is an input rather than a result of the calculation. 

Experiments (Aldridge 1973) have generally been concerned with the resonant 
frequencies and form of axisymmetric oscillations between concentric spheres wibh 
E = O(1) (rather than .s 4 1 as for the thin shell). There is no general corresponding 
theory; the conclusions appear to be that, while observed resonant frequencies corre- 
spond to numerical values based on a Rayleigh quotient (Aldridge 1973), the form of 
oscillation is complicated. The thin shell E < 1, regarded as a first step towards 
E = O(l) ,  is in broad agreement with these observations, as far as either goes, in 
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predicting an enhanced response at the natural-mode frequencies m/n(n + 1 )  with 
continued energy transfer to fine scales. 

Hitherto we have discussed the ‘validity’ of normal modes derived from LTE. 
From a more practical (e.g. oceanographic) viewpoint, perhaps the chief features of 
interest in the solution to the initial-value problem are (i) the continual generation of 
O ( d )  inertial waves a t  critical latitudes and (ii) the manner in which free inertial waves 
evolve and cover the sphere. 

Section 4 implies that any sinusoidal oscillation of frequency r~ less than 2Q and 
global length scale generates inertial waves at its critical latitudes (cos19~ = f a/2Q). 
The energy transfer is at a rate O(sZs2) relative to the global energy in the forcing 
oscillation, and the inertial waves, of relative amplitude O ( d ) ,  radiate this energy 
away from the critical latitudes a t  a speed O(asZs). I n  doing so they develop O(ea) 
horizontal wavelengths but retain the forcing frequency. 

The results (ii) are described in $ 3  for the O(s)  transient inertial oscillations of the 
initial-value problem. However, some apply to all free inertial waves of given azimuthal 
wavenumber m. Thus they retain their frequency and vertical structure number n (not 
precisely the vertical wavenumber) while their meridional wavenumber is determined 
by the local dispersion relation ($3.1). Their energy travels with the group velocity of 
the particular vertical mode, i.e. along the characteristics shown in figure 1 and its 
mirror image. Hence the amplitude and phase of the wave envelope evolve as stated 
(for W ( p ,  7)) in $3.2.  

In  the initial-value problem there was an O ( E )  initial distribution of horizontal 
motion having the local inertial frequency everywhere. From any such beginning, 
satisfaction of the local dispersion relation as the energy propagates implies a gain of 
vertical motion and small O(sa) horizontal scales. Waves from the northern hemisphere 
progressing south form caustics, or fronts of greatest advance, in the form of an Airy 
function with a relative amplitude gain s-i. The fronts span a breadth ad. One forms 
for each vertical mode, those for the lowest modes travel fastest, and there are corre- 
sponding fronts in the northern hemisphere marking the greatest advance of waves 
from the south. In  passing across the poles, inertial waves suffer a phase change of &r. 

This problem was suggested to me by Professor J. W. Miles, and I should also like 
to thank Professor K. Stewartson and the referees for helpful comments on an earlier 
version. The work was begun at  the Institute of Geophysics and Planetary Physics, 
University of California at San Diego, with the partial support of the Atmospheric 
Sciences Section, National Science Foundation, N.S.F. Grant GA-35396 X. 
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